Last updated: 2023-11-15
Checks: 5 2
Knit directory: ~/multistate2/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of
the R Markdown file created these results, you’ll want to first commit
it to the Git repo. If you’re still working on the analysis, you can
ignore this warning. When you’re finished, you can run
wflow_publish
to commit the R Markdown file and build the
HTML.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20230211)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.
absolute | relative |
---|---|
~/multistate2//code/smoothtest.R | code/smoothtest.R |
~/multistate2//code/newsmooth.R | code/newsmooth.R |
~/multistate2/code/fitarray.R | code/fitarray.R |
~/multistate2/code/arrayindicate.R | code/arrayindicate.R |
~/multistate2/code/frs30_URBUT/fun.frs_30ynew.R | code/frs30_URBUT/fun.frs_30ynew.R |
~/multistate2//output/dfascvd_newbp.rds | output/dfascvd_newbp.rds |
~/multistate2/code/frs30_URBUT/fun.frs_30y.R | code/frs30_URBUT/fun.frs_30y.R |
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 988af83. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rproj.user/
Ignored: analysis/.DS_Store
Ignored: code/.DS_Store
Ignored: data/
Ignored: lesliepics/.DS_Store
Ignored: output/
Ignored: plots/.DS_Store
Unstaged changes:
Modified: analysis/NRI.Rmd
Modified: analysis/index.Rmd
Modified: analysis/rocplots.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/rocplots.Rmd
) and HTML
(docs/rocplots.html
) files. If you’ve configured a remote
Git repository (see ?wflow_git_remote
), click on the
hyperlinks in the table below to view the files as they were in that
past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 273d024 | Sarah Urbut | 2023-09-22 | Update |
Rmd | ff43074 | Sarah Urbut | 2023-09-21 | Update |
Rmd | c14de32 | Sarah Urbut | 2023-09-20 | Update |
Rmd | 4d7d65c | Sarah Urbut | 2023-09-17 | Update |
This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.
When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
NOw ROC
source("~/dynamichr/code/utils.R")
source("~/multistate2//code/smoothtest.R")
source("~/multistate2//code/newsmooth.R")
source("~/multistate2/code/fitarray.R")
library("reshape2")
source("~/multistate2/code/arrayindicate.R")
source("~/multistate2/code/frs30_URBUT/fun.frs_30ynew.R")
load("~/Library/CloudStorage/Dropbox-Personal///pheno_dir/output/merged_pheno_censor_final_withdrugs_smoke.rds")
dfh$cad.prs.lec=cut(dfh$cad.prs,breaks = c(-5,-0.84,0.84,5),labels = c("low","mid","high"))
dfh$int=interaction(dfh$f.31.0.0,dfh$cad.prs.lec)
# Relabel the levels of the interaction variable
levels(dfh$int) <- c(1,2,3,4,5,6)
train=dfh[1:(nrow(dfh)*0.80),]
dfascvd=readRDS("~/multistate2//output/dfascvd_newbp.rds")
test=dfh[!(dfh$identifier%in%train$identifier),]
test=merge(test,dfascvd[,-which(names(dfascvd)%in%c("age","anylipidmed0","bp_med2","smoke"))],by.x="identifier",by.y="sample_id")
test$ascvd_10y_accaha=test$as2
test$phenos.enrollment=test$f.21003.0.0
test=data.table(test)
source("~/multistate2/code/frs30_URBUT/fun.frs_30y.R")
library(CVrisk)
ages=c(40:80)
nstates=c("Health", "Ht","HyperLip","Dm","Cad","death","Ht&HyperLip","HyperLip&Dm","Ht&Dm","Ht&HyperLip&Dm")
modelfit=fitfunc2(data.table(train),ages = ages,nstates = nstates,mode = "binomial",covariates ="cad.prs+f.31.0.0+smoke+antihtn_now")
set.seed(456)
enrollments = c(41:70)
aucmat = matrix(NA, nrow = length(enrollments), ncol = 4)
prcmat = matrix(NA, nrow = length(enrollments), ncol = 4)
semat = matrix(NA, nrow = length(enrollments), ncol = 4)
pmat = matrix(NA, nrow = length(enrollments), ncol = 2)
ages = 40:80
enrollments = c(41:79)
## return a matrix of coefficients over all ages for a given state to state transition
b=coefplotsmooth2(ages = ages,start = "Health",stop = "Cad",modelfit = modelfit,window_width = 20,span = 0.75,degree = 2)
ggplotly(b$plot)
coefs=b$custom_smooth
for (z in 1:length(enrollments)) {
age = enrollments[z]
start = age
stop = 80
df_frame = test
atrisk = df_frame[age < Cad_0_censor_age &
age < Ht_0_censor_age &
age < HyperLip_0_censor_age &
age < Dm_0_censor_age & smoke == 0 , ]
df_updated = data.frame(atrisk)
ar = data.frame(
"intercept" = 1,
"cad.prs" = atrisk$cad.prs,
"sex" = atrisk$f.31.0.0,
"smoke" = atrisk$smoke,
"antihtn_now" = ifelse(atrisk$antihtn == 1 &
atrisk$htn_age < age, 1, 0)
)
# ar = data.frame(
# "intercept" = 1,
# "cad.prs" = atrisk$cad.prs,
# "sex" = atrisk$f.31.0.0,
# "smoke" = atrisk$smoke,
# "antihtn_now" = ifelse(atrisk$antihtn == 1 &
# atrisk$htn_age < age, 1, 0),
# "statin_now" = ifelse(atrisk$statin == 1 &
# atrisk$statin_age < age, 1, 0)
# )
dat = data.frame(
"id" = atrisk$identifier,
"mysex" = as.factor(atrisk$sex),
"myage" = rep(age, nrow(atrisk)),
"mysbp" = atrisk$sbp,
"mytreat" = ifelse(atrisk$antihtn == 1 &
atrisk$htn_age < age, 1, 0),
"mysmoking" = atrisk$smoke,
"mydiabetes" = ifelse(atrisk$Dm_0_Any == 2 &
atrisk$Dm_0_censor_age < age, 1, 0),
"mytotalchol" = atrisk$choladj,
"myhdl" = atrisk$hdladj,
"Race" = atrisk$Race,
"mystatnow" = ifelse(atrisk$statin == 1 &
atrisk$statin_age < age, 1, 0)
)
mso = compute_prediction_product_matrix(
coefmat = coefs,
atrisk = ar,
agepredinterval = c(start:stop)
)
df_updated$ms = mso$PredictedIntervalrisk
f = fun.frs_30y(
dat,
id = "id",
sex = "mysex",
age = "myage",
sbp = "mysbp",
treat = "mytreat",
smoking = "mysmoking",
diabetes = "mydiabetes",
totalchol = "mytotalchol",
hdl = "myhdl"
)
df_updated$frs.30y = f$frs_orig
df_updated$frs.recal = f$frs_recali
### return matrix of smoothed coefficeints
#library(purrr)
rm(atrisk)
#require(pROC)
df_updated$outcome = ifelse(df_updated$Cad_0_Any == 2 &
df_updated$Cad_0_censor_age < stop,
1,
0)
#d = df_updated[round(phenos.enrollment, 0) == age, ]
d = df_updated
#d=d[!is.na(d$ascvd_10y_accaha),]
aucmat[z, 1] = roc(d$outcome ~ d$ms)$auc
semat[z, 1] = sqrt(var(roc(d$outcome ~ d$ms)))
aucmat[z, 2] = roc(d$outcome ~ d$frs.30y)$auc
semat[z, 2] = sqrt(var(roc(d$outcome ~ d$frs.30y)))
aucmat[z, 3] = roc(d$outcome ~ d$frs.recal)$auc
semat[z, 3] = sqrt(var(roc(d$outcome ~ d$frs.recal)))
aucmat[z, 4] = roc(d$outcome ~ d$cad.prs)$auc
semat[z, 4] = sqrt(var(roc(d$outcome ~ d$cad.prs)))
roc1 <- roc(d$outcome, d$ms)
roc2 <- roc(d$outcome,d$frs.recal)
roc3 <- roc(d$outcome,d$cad.prs)
pmat[z, 1] = roc.test(roc1,roc2)$p
pmat[z, 2] = roc.test(roc1,roc3)$p
require(PRROC)
fg <- d$ms[d$outcome == 1]
bg <- d$ms[d$outcome == 0]
prcmat[z, 1] = pr.curve(scores.class0 = fg, scores.class1 = bg)$auc.integral
#semat[i,1]=roc(d$outcome~d$ms)$se
#require(PRROC)
fg <- na.omit(d$frs.30y[d$outcome == 1])
bg <- na.omit(d$frs.30y[d$outcome == 0])
prcmat[z, 2] = pr.curve(scores.class0 = fg, scores.class1 = bg)$auc.integral
fg <- na.omit(d$frs.recal[d$outcome == 1])
bg <- na.omit(d$frs.recal[d$outcome == 0])
prcmat[z, 3] = pr.curve(scores.class0 = fg, scores.class1 = bg)$auc.integral
fg <- na.omit(d$cad.prs[d$outcome == 1])
bg <- na.omit(d$cad.prs[d$outcome == 0])
prcmat[z, 4] = pr.curve(scores.class0 = fg, scores.class1 = bg)$auc.integral
print(paste0("Completedforage", age))
}
saveRDS(aucmat,file = "../output/auc_30year.rds")
saveRDS(prcmat,file = "../output/prc_30year.rds")
rownames(aucmat) = enrollments
colnames(aucmat)=c("MSLT","FRS30","FRSRC","PRS")
m = melt(aucmat, id.vars = "Age")
names(m) = c("Age", "Model", "AUC")
m$Model = as.factor(m$Model)
levels(m$Model)[1] = "MSGene"
levels(m$Model)[2] = "FRS30y"
levels(m$Model)[3] = "FRS30recal"
levels(m$Model)[4] = "PRS only"
m$se=as.vector(semat)
aucplot <-
ggplot(m,
aes(x = Age, y = AUC, color = Model, ymin = AUC + se, ymax = AUC - se))+ geom_point() +
geom_line(aes(group = Model, color = Model), linewidth = 3) +
geom_pointrange() +
ylim(0.5, 0.8) +
theme_classic() + ggtitle(paste0("Lifetime risk prediction, ROC AUC"))
library(pROC)
rownames(prcmat) = enrollments
colnames(prcmat)=c("MSGene","FRS30y","FRS30.recal","PRSonly")
prcmat=prcmat[,c("MSGene","FRS30y","FRS30.recal","PRSonly")]
m = melt(prcmat, id.vars = "Age")
names(m) = c("Age", "Model", "AUC")
m$Model = as.factor(m$Model)
levels(m$Model)[1] = "MSGene"
levels(m$Model)[2] = "FRS30y"
levels(m$Model)[3] = "FRS30.recal"
levels(m$Model)[4] = "PRSonly"
m$se=as.vector(semat[,c(1,2,3,4)])/10
#m = m[m$Model %in% c("MSGene", "FRS30y", "PRS only"), ]
prplot <-
ggplot(m,
aes(x = Age, y = AUC, color = Model, ymin = AUC + se, ymax = AUC - se))+ geom_point() +
geom_line(aes(group = Model, color = Model), linewidth = 3) +
geom_pointrange() +
theme_classic() + ggtitle(paste0("Lifetime risk prediction, Precision Recall"))
ggarrange(aucplot,prplot,common.legend = T,legend = "right")
figure <- ggarrange(aucplot + rremove("ylab") + rremove("xlab"), prplot + rremove("ylab") + rremove("xlab"), # remove axis labels from plots
labels = NULL,
ncol = 2, nrow = 1,
common.legend = TRUE, legend = "top",
align = "hv",
font.label = list(size = 10, color = "black", face = "bold", family = NULL, position = "top"))
fig=annotate_figure(figure, left = textGrob("AUC", rot = 90, vjust = 1, gp = gpar(cex = 1.3)),
bottom = textGrob("Age at Calculation", gp = gpar(cex = 1.3)))
ggsave(fig,file="../output/jointaucprc_30.pdf",dpi=600,width=10,height=8,units = "in")
enrollments = c(41:70)
aucmat = matrix(NA, nrow = length(enrollments), ncol = 3)
prcmat = matrix(NA, nrow = length(enrollments), ncol = 3)
semat = matrix(NA, nrow = length(enrollments), ncol = 3)
## return a matrix of coefficients over all ages for a given state to state transition
b=coefplotsmooth2(ages = ages,start = "Health",stop = "Cad",modelfit = modelfit,window_width = 20,span = 0.75,degree = 2)
ggplotly(b$plot)
coefs=b$custom_smooth
for (z in 1:length(enrollments)) {
age = enrollments[z]
start = age
stop = min(age+10,80)
#stop=80
df_frame = test
atrisk = df_frame[age < Cad_0_censor_age &
age < Ht_0_censor_age &
age < HyperLip_0_censor_age &
age < Dm_0_censor_age & smoke == 0 , ]
df_updated = data.frame(atrisk)
ar = data.frame(
"intercept" = 1,
"cad.prs" = atrisk$cad.prs,
"sex" = atrisk$f.31.0.0,
"smoke" = atrisk$smoke,
"antihtn_now" = ifelse(atrisk$antihtn == 1 &
atrisk$htn_age < age, 1, 0)
)
# ar = data.frame(
# "intercept" = 1,
# "cad.prs" = atrisk$cad.prs,
# "sex" = atrisk$f.31.0.0,
# "smoke" = atrisk$smoke,
# "antihtn_now" = ifelse(atrisk$antihtn == 1 &
# atrisk$htn_age < age, 1, 0),
# "statin_now" = ifelse(atrisk$statin == 1 &
# atrisk$statin_age < age, 1, 0)
# )
dat = data.frame(
"id" = atrisk$identifier,
"mysex" = as.factor(atrisk$sex),
"myage" = rep(age, nrow(atrisk)),
"mysbp" = atrisk$sbp,
"mytreat" = ifelse(atrisk$antihtn == 1 &
atrisk$htn_age < age, 1, 0),
"mysmoking" = atrisk$smoke,
"mydiabetes" = ifelse(atrisk$Dm_0_Any == 2 &
atrisk$Dm_0_censor_age < age, 1, 0),
"mytotalchol" = atrisk$choladj,
"myhdl" = atrisk$hdladj,
"Race" = atrisk$Race,
"mystatnow" = ifelse(atrisk$statin == 1 &
atrisk$statin_age < age, 1, 0)
)
mso = compute_prediction_product_matrix(
coefmat = coefs,
atrisk = ar,
agepredinterval = c(start:stop)
)
df_updated$ms = mso$PredictedIntervalrisk
pce.reverse.tenyear =
compute_CVrisk2(
df = dat,
scores = "as2",
age = "myage",
gender = "mysex",
race = "Race",
totchol = "mytotalchol",
sbp = "mysbp",
hdl = "myhdl",
bp_med = "mytreat",
diabetes = "mydiabetes",
smoker = "mysmoking",
lipid_med = "mystatnow"
)$as2
df_updated$pceten = pce.reverse.tenyear
rm(atrisk)
#require(pROC)
df_updated$outcome = ifelse(df_updated$Cad_0_Any == 2 &
df_updated$Cad_0_censor_age < stop,
1,
0)
#d = df_updated[round(phenos.enrollment, 0) == age, ]
d = df_updated
#d=d[!is.na(d$ascvd_10y_accaha),]
aucmat[z, 1] = roc(d$outcome ~ d$ms)$auc
semat[z, 1] = sqrt(var(roc(d$outcome ~ d$ms)))
aucmat[z, 2] = roc(d$outcome ~ d$pceten)$auc
semat[z, 2] = sqrt(var(roc(d$outcome ~ d$pceten)))
aucmat[z, 3] = roc(d$outcome ~ d$cad.prs)$auc
semat[z, 3] = sqrt(var(roc(d$outcome ~ d$cad.prs)))
pmat[z, 1] = roc(d$outcome ~ d$ms)$auc
require(PRROC)
fg <- d$ms[d$outcome == 1]
bg <- d$ms[d$outcome == 0]
prcmat[z, 1] = pr.curve(scores.class0 = fg, scores.class1 = bg)$auc.integral
#semat[i,1]=roc(d$outcome~d$ms)$se
#require(PRROC)
fg <- na.omit(d$pceten[d$outcome == 1])
bg <- na.omit(d$pceten[d$outcome == 0])
prcmat[z, 2] = pr.curve(scores.class0 = fg, scores.class1 = bg)$auc.integral
fg <- na.omit(d$cad.prs[d$outcome == 1])
bg <- na.omit(d$cad.prs[d$outcome == 0])
prcmat[z, 3] = pr.curve(scores.class0 = fg, scores.class1 = bg)$auc.integral
print(paste0("Completedforage", age))
}
saveRDS(aucmat,file = "../output/aucten.rds")
saveRDS(prcmat,file = "../output/prcten.rds")
rownames(aucmat) = enrollments
m = melt(aucmat, id.vars = "Age")
names(m) = c("Age", "Model", "AUC")
m$Model = as.factor(m$Model)
levels(m$Model)[1] = "MSGene Ten"
levels(m$Model)[2] = "PCE Ten"
levels(m$Model)[3] = "PRS only"
m$Age=enrollments
m$se=as.vector(semat)
#m = m[m$Model %in% c("MSGene", "FRS30y", "PRS only"), ]
aucplot <-
ggplot(m,
aes(x = Age, y = AUC, color = Model, ymin = AUC + se, ymax = AUC - se))+ geom_point() +
geom_line(aes(group = Model, color = Model), linewidth = 3) +
geom_pointrange() +
ylim(0.5, 0.8) +
theme_classic() + ggtitle(paste0("10-year risk prediction, ROC AUC"))
library(pROC)
rownames(prcmat) = enrollments
colnames(prcmat)=c("MSGene 10 year","PCE","PRSonly")
m = melt(prcmat, id.vars = "Age")
names(m) = c("Age", "Model", "AUC")
m$Model = as.factor(m$Model)
levels(m$Model)[1] = "MSGene 10year"
levels(m$Model)[2] = "PCE 10y"
levels(m$Model)[3] = "PRSonly"
m$se=as.vector(semat[,c(1,2,3)])/2
prplot <-
ggplot(m,
aes(x = Age, y = AUC, color = Model, ymin = AUC + se, ymax = AUC - se))+ geom_point() +
geom_line(aes(group = Model, color = Model), linewidth = 3) +
geom_pointrange() +
theme_classic() + ggtitle(paste0("10-year risk prediction, Precision Recall"))
ggarrange(aucplot,prplot,common.legend = T,legend = "right")
figure <- ggarrange(aucplot + rremove("ylab") + rremove("xlab"), prplot + rremove("ylab") + rremove("xlab"), # remove axis labels from plots
labels = NULL,
ncol = 2, nrow = 1,
common.legend = TRUE, legend = "top",
align = "hv",
font.label = list(size = 10, color = "black", face = "bold", family = NULL, position = "top"))
fig=annotate_figure(figure, left = textGrob("AUC", rot = 90, vjust = 1, gp = gpar(cex = 1.3)),
bottom = textGrob("Age at Calculation", gp = gpar(cex = 1.3)))
library(ggpubr)
library(gridExtra)
library(grid)
ggsave(fig,file="../output/auctenyear.pdf",dpi=600,width = 10,height=8)
ggarrange(aucplot,ga,nrow = 2,labels=c("A"))
sessionInfo()